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Capacity of Interference Channels With Partial
Transmitter Cooperation

Ivana Marić, Member, IEEE, Roy D. Yates, Member, IEEE, and Gerhard Kramer, Member, IEEE

Abstract—Capacity regions are established for several two-
sender, two-receiver channels with partial transmitter cooperation.
First, the capacity regions are determined for compound multiple-
access channels (MACs) with common information and compound
MACs with conferencing. Next, two interference channel models
are considered: an interference channel with common information
(ICCI) and an interference channel with unidirectional coopera-
tion (ICUC) in which the message sent by one of the encoders is
known to the other encoder. The capacity regions of both of these
channels are determined when there is strong interference, i.e., the
interference is such that both receivers can decode all messages
with no rate penalty. The resulting capacity regions coincide
with the capacity region of the compound MAC with common
information.

Index Terms—Capacity region, cooperation, strong interference.

I. INTRODUCTION

DISCRETE memoryless channels with two senders and
two receivers permit various forms of sender coopera-

tion. In the most restrictive circumstance when cooperation is
precluded, we have the interference channel [1], [2]. However,
cooperation among encoders can improve the achievable rates,
as shown for Gaussian networks in [3]–[7] and multiple-access
channels (MACs) with conferencing in [8]. In this paper, we
examine two-sender, two-receiver communication systems that
allow partial cooperation among the encoders by conferencing
and signaling with common messages.

For a single receiver, the MAC with conferencing encoders
has two communication links with finite capacities between the
two encoders over which the encoders obtain partial information
about each other’s messages. This information is referred to as
a common message as it is known to both encoders after con-
ferencing. In addition, each encoder will still have independent
information referred to as a private message, unknown to the
other encoder. Consequently, the capacity region of the MAC
with partially cooperating encoders is related to the capacity re-
gion of the MAC with common information. The capacity re-
gion of this latter channel was determined by Slepian and Wolf
[9] (see also [10]).
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I. Marić is with the Department of Electrical Engineering, Stanford Univer-

sity, Stanford, CA 94305 USA (e-mail: ivanam@wsl.stanford.edu).
R. D. Yates is with WINLAB/Technology Center of New Jersey, Rutgers

University, New Brunswick, NJ 08902-3390 USA (e-mail: ryates@winlab.
rutgers.edu).

G. Kramer is with Bell Labs, Alcatel-Lucent, Murray Hill, NJ 07974-0636
USA (e-mail: gkr@bell-labs.com).

Communicated by A. El Gamal, Guest Editor for the Special Issue on Re-
laying and Cooperation.

Digital Object Identifier 10.1109/TIT.2007.904792

We use the approach of [9], [10] in Section II to establish the
capacity region of the compound MAC with common
information (CMAC) that has two receivers decoding messages
sent from both encoders. We then use this result in Section III to
determine the capacity region of the compound MAC with con-
ferencing encoders where the encoders communicate over sepa-
rate links with finite capacities, as in [8]. In subsequent sections,
two interference channel models with partial transmitter coop-
eration are considered. Specifically, in Section IV we relax the
decoding constraint and assume that each decoder is interested
only in a private message. In this case, the channel becomes an
interference channel with common information (ICCI). We de-
termine the capacity region of this channel for the special case of
strong interference [11]–[13], i.e., the interference is such that
both receivers can decode all messages. In Section V, we con-
sider the interference channel with unidirectional cooperation
(ICUC) in which the message at one of the encoders is made
available to the other encoder. For the Gaussian case of weak
interference, the capacity region of this channel was recently
determined in [14], [15]. We derive capacity results for strong
interference. For the interference channel, the capacity region
in strong interference was determined in [13] and was shown
to coincide with the capacity region of the two-sender, two-re-
ceiver compound MAC in which both messages are decoded at
both receivers [16].

The four channel models considered here and the relation-
ships between their capacity regions are shown in Fig. 1. In order
to clarify these relationships, we introduce an indicator function

otherwise.
(1)

We similarly define the indicator functions , and
for the respective capacity regions of the compound

MAC with conferencing, the ICCI and the ICUC. The results
in this paper were presented in part in the conference papers
[17]–[19].

II. THE COMPOUND MAC WITH COMMON INFORMATION

Consider a channel with finite-input alphabets , finite-
output alphabets , and a conditional probability distribu-
tion , where are channel in-
puts and are channel outputs. Each encoder
, , wishes to send a private message

to decoders in channel uses. In addition, a common message
is communicated from the encoders to both

receivers. The channel is memoryless and time-invariant in the
sense that

(2)
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Fig. 1. Considered channel models with limited transmitter cooperation and the relationship between their capacity regions.

for all , where , and , are random variables rep-
resenting the respective inputs and outputs,
denotes the messages to be sent, and .
We will follow the convention of dropping subscripts of proba-
bility distributions if the arguments of the distributions are lower
case versions of the corresponding random variables. To sim-
plify notation, we also drop superscripts when .

The messages , , and are independently generated
at the beginning of each block of channel uses. Encoder ,

, maps the common message and the private message
into a codeword

(3)

Decoder , , estimates and based on the received
-sequence as

(4)

An code has two encoding functions ,
, two decoding functions , , and an error probability

sent (5)

Fig. 2. MAC with common information.

A rate triple is achievable if, for any , there
is an code such that

and

The capacity region of the compound MAC with
common information is the closure of the set of all achievable
rate triples . We next determine using a
result of Slepian and Wolf [9].

The above channel becomes the MAC with Common Informa-
tion if there is only one receiver (see Fig. 2). Consider the channel
output . A code for this channel has two encoding functions (3),
one decoding function (4), and an error probability

sent (6)
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To express the capacity region of the MAC with common infor-
mation, we define

(7)

The capacity region of the MAC with common information is

(8)

where the union is over all joint distributions that factor as

(9)

We remark that the convex hull used in [9] was shown to be
unnecessary in [10].

We use (8) to determine the capacity region of the compound
MAC with common information. Observe that this channel

defines two MACs

(10)

(11)

We adapt the coding strategy of Willems in [10] to prove the
following result.

Theorem 1: The capacity region of the compound MAC with
common information is

(12)

where the union is over all joint distributions that factor as (9)
for .

Proof: For the converse, consider an
code for a CMAC. From [10, Sec. 3.4] it follows that for

, belongs to

(13)

where

(14)

and

as (15)

Continuing as in [10, Sec. 3.4], the region satisfies

(16)

where and, using , we have

(17)

From (13), (15)–(17), and by comparing (16) with (7), we ob-
serve that

where is computed via (17). This completes the
converse.

For achievability, we adapt the encoding and decoding
strategy proposed by Willems in [10] to achieve the rates (12).
Specifically, we use the codebook in [10, Sec. 3] constructed
as follows.

1) Fix the distribution
2) Generate sequences each with probability

Label these sequences , .
3) For each , generate sequences with probability

where . Label them , .
Encoding: To send a common message and a private mes-

sage encoder sends the codeword .
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Fig. 3. Compound MAC with conferencing encoders.

Decoding: At each decoder, we use the decoding scheme of
[10]. After receiving , decoder tries to find a
such that

where is the set of -typical -sequences
with respect to the distribution (9), as defined in

[20, Sec. 14.2].
Error Probability: We apply the union bound to (5) to obtain

(18)

where and are given by (6). It was shown in [10] that
and can be made arbitrarily close to zero when the

rates satisfy (12). From (18) it then follows that can be made
arbitrarily close to zero.

Observe from (12) that depends only on the marginal
distributions . Further, one can show that is
convex by using the proof technique of [10, Appendix A].

III. THE CAPACITY REGION OF THE COMPOUND MAC
WITH CONFERENCING

Suppose there are two links with finite capacities and
between the two encoders, as shown in Fig. 3. We refer to this
channel as a compound MAC with conferencing encoders. The
model is the same as in Section II except that the encoders use
their communication links in the form of a conference [8]. A
conference has two sets of functions ,

. Each function maps the message and the sequence
of previously received symbols from the other encoder into the

th symbol , where has the finite alphabet ,
. We write this as

(19)

(20)

and limit the conference rates with the bounds

(21)

(22)

where is the cardinality of .

The encoding function of user maps and what was
learned from the conference into a codeword . A code has
two sets of functions (19)–(20), two encoding functions

(23)

(24)

that generate codewords

(25)

(26)

and two decoding functions

(27)

such that the error probability is

sent (28)

A rate pair is achievable if, for any , there exists
an code such that

and (29)

The capacity region of the compound MAC with conferencing
encoders is the closure of the set of all achievable rate pairs

.

Theorem 2: The capacity region of the compound MAC with
conferencing links with capacities and is

(30)
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where the union is over all joint distributions that factor as

(31)

Proof: For the converse, the same reasoning as in the proof
of the converse in Theorem 1 applies.

For achievability, we use the strategy proposed by Willems
in [8, Sec. IV]. Specifically, we partition the set
into cells that we label as .
Each cell has elements that we label as

. Define , if is in cell
. The same type of partitioning is done for . De-

fine , ,
and

(32)

We refer to as a common message. Note that and are
unknown to encoders 2 and 1, respectively.

For a single receiver, the MAC after the conference thus re-
duces to a MAC with common and private messages at the en-
coders [8]. The achievability of in (7) then guarantees
that the rates for the MAC with conferencing in [8, Sec. II] are
achievable. Similarly, the compound MAC with conferencing
after the conference is identical to the compound MAC with
common information with , , replaced by ,

, , respectively. The common rate is thus and
the private rates are and . It follows from
Theorem 1 that is achievable for the compound MAC
with conferencing if belongs
to in (12).

We have the following relationship between the region (30)
and the CMAC capacity region (12):

(33)

where , , and the
functions and are defined in (1).

A. Discussion

Observe that is the capacity region of
the two-sender, two-receiver channel with noncooperating en-
coders established by Ahlswede [16]. The rates (30) quantify
the improvement due to transmitter cooperation over the con-
ference links. We can further apply Theorem 2 to a Gaussian
channel in the standard form [2], [21]

(34)

(35)

where the are independent, zero-mean, unit-variance
Gaussian random variables and and are real numbers.
We further add the power constraints

(36)

The power expended for the conference is not considered. We
have the following result.

Corollary 1: The capacity region of the Gaussian compound
MAC with conferencing encoders is

(37)

(38)

(39)

(40)

where the union is over all , , , where , ,
, , , and

Proof: All the mutual information expressions in (30) can
be written as

(41)

for some and set , where denotes the complement of in
. The maximum entropy theorem [20, Theorem 9.6.5] thus

implies that Gaussian inputs maximize (41). Evaluating (30) for
Gaussian inputs yields (37)–(40).

Fig. 4 shows the capacity region for a symmetric channel
where , ,

. Due to the symmetry, we can choose
. Fig. 4 shows that cooperation gives substantial gains

over no cooperation . Note that the bounds (37)–(39)
are loosest for . As increases, these bounds become
more restrictive, but the bound (40) becomes looser. The sum
rate is maximized when is chosen such that (39) and (40) are
the same. The capacity region is the union of all the pentagons
obtained for different values of .

IV. THE CAPACITY REGION OF THE STRONG INTERFERENCE

CHANNEL WITH COMMON INFORMATION

Suppose we relax the constraints of Section II, where both re-
ceivers decode both private messages. Instead, suppose decoder

is interested in only the common message and the private mes-
sage of encoder (see Fig. 5). We refer to this channel as an
ICCI. We determine the capacity region of ICCIs if

(42)

(43)

for all joint distributions that factor as
. We further show that this

class of interference channels is same as those determined by
(48) and (49) below with independent and .

The encoding is done as in Section II. However, each decoder
now estimates the common message and the private mes-

sage based on the received -sequence as

(44)

(45)
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Fig. 5. Interference channel with common information.

Fig. 4. The Gaussian compound MAC with conferencing encoders capacity region with parameters h = h = 0:89, P = P = P = 10, and C =

C = c = 0:5.

An code for the channel has two encoding
functions , , two decoding functions , , and an error
probability

(46)

where

sent (47)

We remark that we could alternatively define by using a
union of events as in (5). A rate triple is achiev-
able if, for any , there is an code
such that

and
The capacity region of the ICCI is the closure of the set of all
achievable rate triples . We have the following re-
sult.

Theorem 3: An ICCI satisfying the strong interference con-
ditions [13]

(48)

(49)

for all joint distributions that factor as
has the capacity region

(50)

(51)

(52)

(53)

where the union is over all joint distributions that factor as

(54)
When the constraints (48) and (49) are satisfied, we refer to the
channel as an ICCI with strong interference. Furthemore, we
have

Proof: From Theorem 1, the rates (12) are achievable if
both private messages are decoded at the receivers. These rates
are clearly also achieved if only a single private message must
be decoded, and are hence achievable in the ICCI. The converse
is more involved and is given in Section IV-A.
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A. Converse: Strong Interference Conditions

We will need the data processing inequality in the following
form.

Lemma 1: For a Markov chain , we have

(55)

Proof: We have

(56)

where holds because of the Markov property and since
conditioning cannot increase entropy. Subtracting both sides
from gives the desired result.

To obtain per-letter conditions (48)–(49) in Theorem 3 we
will need the following Lemmas.

Lemma 2: If

(57)

for all probability distributions on such that
, then

(58)

We note that by symmetry, it follows from Lemma 2 that

(59)

implies .

Proof: The proof follows the same approach as that in the
proof of [22, Proposition 1] and that in [13, Lemma]. Further-
more, the proof is very similar to the proof of Lemma 5 pre-
sented in the Appendix and is therefore omitted.

We will also need the following Lemma.

Lemma 3: The class of interference channels
for which (57) and (59) are valid for all distributions

that factor as in (54) is the same as the
class of for which (48) and (49) are valid for
all product input distributions .

Proof: We use the following result from [13, Lemma]:
If for all product proba-
bility distributions on , then

where and
. The strong interference conditions (48) and

(49) thus imply the conditions (57) and (59).
To prove the converse, we observe that since (57) and (59)

are satisfied for all distributions of the form (54), the conditions
(57) and (59) must also hold for being independent of and

. For such distributions , conditions (57) and (59)
reduce to (48) and (49).

Lemmas 2 and 3 together imply the following statement.

Lemma 4: If

(60)

for all product input distributions , then

(61)

We next prove the converse in Theorem 3.

Proof: Consider an code for the
ICCI. Applying Fano’s inequality gives

where as (or as ). It follows that

(62)

(63)

Since conditioning cannot increase entropy, from (63) it follows
that

(64)

From the problem definition, we have the following Markov
chains for the ICCI:

(65)

(66)

(67)

Applying Lemma 1 to the Markov Chains (66)–(67) yields

(68)

(69)

Using (67) with yields

(70)

We first consider the bound (53) at decoder 1. Inequalities
(62) and (64) imply that for reliable communication we require

(71)

where follows from the independence of , , ;
by (68) and (70); by (3); and by (65). If

(72)
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Fig. 6. Interference channel with unidirectional cooperation.

then it follows by (71) that

(73)

We define

(74)

so that condition (72) becomes

(75)

We next prove the bound (52). Fano’s inequality implies

(76)

where again follows from the independence of , , ;
by (68) and (69); by (3); by (65) and (74). Again, if

(72) holds, then (76) becomes

(77)

The same approach can be used to show that the bounds (52)
and (53) are satisfied at decoder 2 under a condition similar to
(75), namely

(78)

From Lemma 4, it follows that the per-letter conditions (48) and
(49) imply (75) and (78). The bounds (50) and (51) follow by
standard methods as in [10, Sec. III.4]. Finally, we observe from
(73) and (77) that . Since the region

is already convex, we have .

B. Gaussian Channel

Theorem 4: For the Gaussian ICCI (34)–(35) with the power
constraints (36) that satisfy , , the capacity
region is

(79)

where the union is over all , , , where , ,
, , and .

Proof: We can use similar reasoning as in [12] to show that
both users can decode all three messages. Suppose
is inside the capacity region and the transmitters use codes that
reliably achieve these rates. Receiver 1 can then generate
since it must decode both and . Similarly, receiver 2 can
generate , and receivers 1 and 2 can generate the respective

(80)

(81)

But observe that (80) and (81) are less noisy versions of (35)
and (34), respectively. Hence both receivers can decode all three
messages and the channel becomes a compound MAC. From the
maximum-entropy theorem [20, Theorem 9.6.5], the compound
MAC region (12) is largest for Gaussian inputs. Evaluating (12)
for Gaussian inputs and , yields (79).

V. THE CAPACITY REGION OF THE STRONG INTERFERENCE

CHANNEL WITH UNIDIRECTIONAL COOPERATION

We now consider an interference channel where the message
sent at one encoder is available to the other encoder, but not vice
versa. Achievable rates for this channel model have been pre-
sented in [23]. The channel was referred to as a cognitive radio
channel because of its relation to cognitive radio applications.
Furthermore, for the case of weak interference, i.e., , the
capacity region was determined in [14] and [15]. The communi-
cation system is shown in Fig. 6, and we describe the encoders,
decoders, and error probability next.
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Each encoder wishes to send an independent message
to receiver in channel uses. Message is

also known at encoder 2, thus allowing for unidirectional coop-
eration. The channel is memoryless and time-invariant as given
by (2). An code for the channel has two en-
coding functions generating codewords

(82)

(83)

two decoding functions

(84)

and an error probability

(85)

where, for , 2, we have

sent

(86)
A rate pair is achievable if, for any , there is an

code such that

and

The capacity region of the ICUC is the closure of the set of all
achievable rate pairs .

Theorem 5: An ICUC that satisfies the strong interference
conditions

(87)

(88)

for all input distributions has the capacity region

(89)

(90)

where the union is over all input distributions .

We prove Theorem 5 in Sections V-A and -B. In Section V-A,
we indicate how the achievability of follows from the
compound MAC with common information. In Section V-B,
we prove the converse and determine the strong interference
conditions. From Theorems 1 and 5, we further have

(91)

A. Achievability

We apply the same reasoning as in Section IV. The rates
(12) of Theorem 1 are achievable when the decoders decode
the common message and both private messages. Encoder 2
knows , so we can view as the common rate. For the

same reason, in the corresponding CMAC has zero rate for
the private message, also reflected in (91). We choose
and the region (12) becomes

(92)

where the union is over all . When conditions
(87)–(88) are satisfied, the region (92) reduces to the region
(89)–(90) in Theorem 5.

B. Converse: Strong Interference Conditions

To prove the converse, we will need the following lemma.

Lemma 5: If

(93)

holds for all joint distributions , then

(94)

By symmetry, we have that im-
plies .

Proof: See the Appendix.

Lemma 5 is similar to a Lemma by Costa and El Gamal [13],
as further explained in the Appendix. We point out that the only
difference between Lemmas 4 and 5 is the constraint on the
probability distributions. The direct proof of Lemma 4 follows
exactly the same steps as the proof of Lemma 5 presented in the
Appendix.

We next prove the converse in Theorem 5.

Proof: Consider an code for the ICUC.
Applying Fano’s inequality gives

(95)

(96)

where as (or as ). We now derive
the bound (90) for receiver .

The inequalities (95) and (96) imply that for reliable commu-
nication we require

(97)

where follows by the independence of and ;
by (82) and (83); by the Markov chain

. But, from Lemma 5 we have

(98)
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and it follows from (97) that

(99)

The bound (89) follows by standard methods

(100)

and now we convert (100) to the single-letter bound (89) as in
[10, Sec. III.4]. This concludes the proof of Theorem 5.

We remark that if (88) does not hold, showing that (89)–(90)
is the capacity region would require proving an outer bound of
the form Due to the asymmetry of
the problem, the approach of (97)–(99) does not apply.

C. Gaussian Channel

Theorem 6: For the Gaussian ICUC (34)–(35) with the power
constraints (36) that satisfy the Gaussian strong interference
(GSI-UC) conditions

(101)

(102)

(103)

where , the capacity region is

(104)

(105)

where is the correlation coefficient for , .
Proof: For achievability, we observe from the maximum-

entropy theorem [20, Theorem 9.6.5] that the compound MAC
region (92) is largest with Gaussian inputs. Under conditions

(106)

(107)

the region (92) reduces to (104)–(105). For the inequality (107)
to hold for all Gaussian inputs , , it must hold for all values
of . However, as (107) is linear in , it is necessary and suffi-

cient to enforce the constraint at . This yields the condi-
tions (102)–(103).

For the converse, following the same reasoning as in The-
orem 4, we observe that under condition (101), decoder 1 can
decode both messages . Hence, the sum rate is bounded
by the cut-set bound [20, p. 445]

(108)

which is maximized for Gaussian inputs and evaluates to (105).
The bound (104) follows by standard methods as in (100).

The constraints (102) and (103) are perhaps difficult to in-
terpret directly as strong interference conditions. To simplify
these constraints, we first note a sign reversal symmetry: with
the substitutions and , we obtain, not
surprisingly, the same strong interference conditions in the pa-
rameters and . From this symmetry, we can conclude it
is sufficient to consider only the “same-sign” case with
and and the “opposite-sign” case with and

. This facilitates the following claims.

Theorem 7: Let .
(a) For , the GSI-UC conditions (102) and (103)

hold if and only if

(109)

(b) For , the GSI-UC conditions (102) and (103)
hold if and only if

(110)

A proof of Theorem 7 appears in the Appendix; the key is
that the GSI-UC conditions always require . Note
that the theorem imposes the strict inequality , only
because admits the possibility that and
in this case, the GSI-UC conditions (102) and (103) are satisfied
for all .

We observe from Theorem 7 that in all cases we have a strong
interference condition in that . We also note that these
conditions are more demanding, particularly on , than those
of (48)–(49), which in the Gaussian case reduce to ,

. In the limit of large , the minimum is a decreasing
function of . Still, there will always be some set of values ,

that satisfy the conditions of Theorem 7 as long as .
Note that corresponds to for which the channel
reduces to the broadcast channel from encoder 2. As the channel
is degraded, there can be no strong interference conditions.

Fig. 7 shows the capacity region for and
. Note that implies so that condition

(109) of Theorem 7 reduces to . Alternatively, in the
opposite case, the GSI-UC conditions are satisfied if

.

VI. CONCLUSION

We presented three channel models that incorporate partial
transmitter cooperation. For two interference channels pre-
sented in Sections IV and V, we determined the capacity region
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Fig. 7. Gaussian ICUC capacity region if h � h or h � �h � 1.

under strong interference where the decoders can decode all
messages with no rate penalty. For the channel with unidirec-
tional cooperation, it is possible that weaker conditions exist
for which the capacity region can be found. Determining the
strong interference conditions for more general channel models
such as interference channels with correlated sources is an open
problem.

APPENDIX

Proof of Lemma 5: We will need a result similar to the
ones in [22, Proposition 1] and [13, Lemma]. In fact, the only
difference from the Proposition in [13] will be in the probability
distributions for which the proposition holds.

Proposition 1: If

(111)

for all probability distributions on then

(112)

for all probability distributions on .
Proof of Proposition 1: We write the right-hand side in

(112) as

(113)

where the inequality follows by (111).

We follow the approach as in [22, Proposition 1] and [13,
Lemma] to obtain

(114)

We write (114) in a slightly different form

(115)

By letting , we observe that Proposi-
tion 1 yields

(116)

We proceed by induction. For , the inequality (94) re-
duces to (112) and is thus satisfied by Proposition 1. We next
assume that (94) holds for

(117)
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From (117) and Proposition 1 it follows that

(118)

where we let . The proof of Lemma 5 follows
from (115), (116), and (118).

If the inputs and are independent, then the same steps
as above apply, as long as forms a Markov
chain in Proposition 1 as in [13].

Proof of Theorem 7 (a): By sign reversal symmetry, it suf-
fices to consider only the case and . First we
show that the GSI-UC conditions (102) and (103) imply (109).
With nonnegativity of and , (102) directly implies

(119)

Since , it follows that . We now show that
. For , implies . For ,

we suppose for the purpose of contradiction that . In
this case, and (103) implies , or
equivalently

(120)

Applying the upper bound in (120) to the lower bound in (119)
yields the contradiction . It follows that for
all .

To complete the forward proof, we observe that if ,
then (109) follows directly from (119). On the other hand, if

, then and since , (103) implies
, or equivalently

(121)

Since , (121) implies (109), completing the proof that the
GSI-UC conditions imply (109).

For the reverse direction, we now show that (109) implies
(102). We consider the cases and separately. For

, (109) implies

(122)

From nonnegativity of , , and , (102) follows. For
, (109) implies

(123)

Since , it follows that

(124)

From nonnegativity of , , and , (102) follows.
Now we show (109) also implies (103). If then

(109) implies

(125)

Since , we have

(126)

Since and , (103) follows.

Next we assume that . In this case, we observe
that (109) still implies (125). Since , (125) implies

(127)

Since and , (103) follows.
Finally, we assume that . In this case, (109) implies

, or equivalently

(128)

As both the left and right side are nonnegative, (103) follows.

Proof of Theorem 7 (b): By sign reversal symmetry, it suf-
fices to consider only the opposite-sign case and

. We will show that the GSI-UC conditions (102) and
(103), restated here in terms of as

(129)

(130)

hold if and only if

(131)

To show that the GSI-UC conditions imply (131) requires the
following lemma.

Lemma 6: If and the GSI-UC conditions (129)
and (130) hold, then .

A proof of Lemma 6 follows below. From Lemma 6, (129)
implies , which is equivalent to (131).

For the reverse direction, we assume (131) is satisfied, im-
plying

(132)

Since , both sides of (132) are nonnegative, and thus
(129) holds. Furthermore, since , (132)
and the nonnegativity of and imply

(133)

Thus, the GSI-UC condition (130) holds.

Proof of Lemma 6: For the purpose of contradiction, we
assume . Thus, by (129), we have ,
or equivalently

(134)

Now we must consider the cases and sepa-
rately. If , then (130) implies

(135)

Applying the upper bound in (134) to the lower bound in (135)
yields . In this case, this implies , which is a
contradiction. If , then (130) implies

(136)

Applying the upper bound in (134) to the lower bound in (136)
yields , which is a contradiction.
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